orantı

 

orantı

Orantı matematikte iki değişken arasındaki ilişkidir. İki değişken arasında sabit bir çarpan olması haline doğru orantı veya kısaca orantı denilir. İki değişkenin çarpım sonuçlarının sabit olması hali ise ters orantı olarak bilinir.

Doğru orantı

İki adet değişken a ve b, sabit çarpan ise m ile gösterilirse, genel olarak;

    m = b / a

Orantı hesaplarında belli bir a değeri ile bu değerin karşılığı olan b değeri bellidir. Farklı bir a değeri için b değerinin ne olacağı araştırılır. İlk durumdaki a ve b değeri 1 altsimgesi ile ikinci durumdaki a ve b de 2 altsimgesi ile gösterilirse, verilenler b1 a1 ve a2 dir ve sorulan da b2 dir. a1 ve b1 arasındaki oran bilindiğine göre, önce m bulunur. Daha sonra m ve a2 den yararlanılarak, b1 bulunur. Aslında m yi ayrıca hesaplamaya gerek yoktur. Çözüm için bir bayağı kesir denklemi yeterlidir.

    b₂ / a₂ = m = b₁ / a₁

    b₂ / a₂ = b₁ / a₁

    b₂ = b₁ · (a₂ / a₁)

Ters orantı

İki değişken a ve b, bu iki değişkenin çarpım sonucu n ile gösterilirse, genel olarak;

    n = a · b

İlk durumdaki a ve b değeri 1 altsimgesi ile ikinci durumdaki a ve b de 2 altsimgesi ile gösterilirse, verilenler a1b1 ve a2 dir ve sorulan da b2 dir. a1 ve b1 çarpımı bilindiğine göre önce n bulunur. Daha sonra n ve a2 den yararlanılarak, b2 bulunur. Aslında n yi ayrıca hesaplamaya gerek yoktur. Çözüm için bir bayağı kesir denklemi yeterlidir.

    b₂ · a₂ = n = b₁ · a₁

    b₂ · a₂ = b₁ · a₁

    b₂ = (b₁ · a₁) / a₂

Örnekler

Örnek (Doğru orantı)

Sabit süratli bir taşıt aracı 10 dakikada 12 km yol alıyorsa, bu aracın 40 dakikada kaç km yol alacağı sorusu bir doğru orantı sorusudur. Çünkü değişkenlerin biri artarken (zaman) diğeri de (yol) artmaktadır.

a ile zaman ve b ile de alınan yol gösterilirse,

    b₂ = b₁ · (a₂ / a₁)

    b₂ = 12 · (40 / 10) = 48

Örnek (Ters orantı)

Sürati saatte 40 km olan bir taşıt aracı iki nokta arasındaki yolculuğunu 3 saatte bitirmiştir. Aynı yolu 2 saatte bitiren bir başka taşıt aracının süratinin ne olduğu bir ters orantı sorusudur. Çünkü yol uzunluğu sabit olduğu için bir değişken (sürat) artarken diğer değişken (zaman) azalmaktadır. a ile zaman ve b ile de sürat gösterilirse,

    b₂ = b₁ · (a₁ / a₂)

    b₂ = 40 · (3 / 2) = 60

orantı ne demek? TDK anlamı ve açıklaması

1. isim Bir şeyi oluşturan parçaların kendi aralarında ve parçalarla bütün arasında bulunan uygunluk; oran, tenasüp.

2. isim, matematik Birincinin ikinciye oranı, üçüncünün dördüncüye oranına eşit olan dört terim arasındaki bağıntı; orta.

Matematik Terimleri Sözlüğü - 1983

Türkçe: tenasüp, İngilizce: proportion, Fransızca: proportion, Almanca: Proportion, Latin: proportio

İki oranın eşit olma bildirimi. Simgesi : a/b=c/d, a:b=c:d.

Yöntembilim Terimleri Sözlüğü - 1981

Türkçe: nisbet, İngilizce: proportion

Payı belli bir seçeneğe ilişkin gözlem sıklığı, paydası toplam sıklıktan oluşan ve ilgili ayrıtın toplam içindeki oransal payını gösteren bölüm.

Orta Öğretim Terimleri Kılavuzu - 1963

Türkçe: tenâsüb, Fransızca: proportion

(matematik)

Veteriner Hekimliği Terimleri Sözlüğü -

İngilizce: proportion

Bir toplulukta özel bir durumun toplum sayısına bölünmesiyle hesaplanan epidemiyolojik olaylardaki bir matematiksel ölçüm.

Hemşirelik Terimleri Sözlüğü

İngilizce: proportion

Bir toplulukta, özel bir durumun toplum sayısına bölünmesi ile elde edilen, 0 ila 1 arasında değer alan, pay değerinin payda değeri içinde yer aldığı epidemiyolojik olaylardaki bir matematiksel ölçüm, birimsiz kesir.

Yorum Gönder

🚨 Önemli: Yorum Yapmadan Önce Okuyunuz
  • ✔ Yorumlarınız *Türkçe yazım kurallarına uygun*, saygılı ve konuyla alakalı olmalıdır.
  • ✖ Küfür, hakaret, reklam ve spam içerikli yorumlar *yayınlanmayacaktır*. Denetim süreci uygulanır.
Daha yeni Daha eski
💬